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Purpose. A new, simple, sensitive and rapid method was developed
to analyse the polymorphic purity of crystalline ranitidine-HCI as a
bulk drug and from a tablet formulation.

Methods. Diffuse reflectance infrared Fourier transform (DRIFT) spec-
troscopy was combined with Artificial Neurai Networks (ANNs) as a
data modelling tool. A standard feed-forward network, with back-
propagation rule and with single hidden layer architecture was chosen.
Reduction and transformation of the spectral data enhanced the ANN
performance and reduced the complexity of the ANNs model. Spectral
intensities from 1738 wavenumbers were reduced into 173 averaged
spectral values. These 173 values were used as inputs for the ANN.
Following a sensitivity analysis the number of inputs was reduced to
30, or 35, these being the input windows which had most effect on
the output of the ANN.

Results. For the bulk drug assay, the ANN model had 30 inputs selected
from a sensitivity analysis, one hidden layer, and two output neurons,
one for the percentage of each ranitidine hydrochloride crystal form.
The model could simultaneously distinguish between crystal forms and
quantify them enabling the physical purity of the bulk drug to be
checked. For the tablet assay, the ANN model had 173 averaged spectral
values as the inputs, one hidden layer and five output neurons, two
for the percentage of the two ranitidine hydrochloride crystal forms
and three more outputs for tablet excipients and additives. The ANN
was able to solve the problem of overlapping peaks and it successfully
identified and quantified all components in tablet formulation with
reasonable accuracy.

Conclusions. Some of the advantages over conventional analytical
methods inciude simplicity, speed and good selectivity. The results
from DRIFT spectral quantification study show the benefits of the
neural network approach in analysing spectral data.

KEY WORDS: DRIFT spectroscopy; ANNSs; ranitidine hydrochlo-
ride; crystal forms.

INTRODUCTION

The polymorphic behaviour of organic solids can be of
crucial importance in the pharmaceutical industry. Properties
varying between polymorphs include stability, crystal shape,
compressibility, density, and dissolution rate. The different
molecular packing may result in a substantially different dosage
to the patient as the drug dissolves. The drug can become less
effective or inactive, or toxic, or, in extreme cases, lethal (1).
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It is thus vital to control crystallisation of drugs and to ensure
the approved polymorph is present in the formulation.

Ranitidine  hydrochloride  (N-(2[({5-{(dimethylamino)
methyi]-2furanyl}methyl)thioJethyl }-N’-methyl-2-nitro-1,1-
ethenediamine hydrochloride), an anti-ulcer drug in current use
is one of the 20 most frequently prescribed drugs. Crystalline
ranitidine is polymorphic and exists in two crystalline forms
known as Form 1 and Form 2, and in several pseudopolymorphic
forms (2). Ranitidine hydrochloride Form 1 crystallises from
an ethanolic solution after addition of ethyl acetate (3). Form
2 crystallises from isopropanol-HCl (4). Scanning electron
microscopy (SEM) photos in Fig. 1, show the morphology of
the two samples and differences in their particle shape.

Due to the patent issue and its commercial value, manufac-
turers and researchers have paid special attention to both forms.
The two forms have almost equal solubilities and there is no
difference in bioavailability (5,6). However, studies on their
solid-state stability with different techniques (2,3,7) have
yielded slightly different stability results.

In this study we investigated the capacity of Artificial
Neural Networks (ANNs) as a data analysis tool to analyse
Diffuse reflectance infrared Fourier transform (DRIFT) spectra
for qualitative and quantitative estimation of ranitidine-HCI.
Over the last few years ANNs have been successfully used to
classify spectra from various modalities including gamma ray
spectroscopy (8), infrared spectroscopy (IR) (9,10), mass spec-
trometry (11), nuclear magnetic resonance (NMR) spectroscopy
(12,13) and x-ray fluorescence (14). Non-destructive methods
of analysis that allow rapid, sufficiently precise and reliable
quality control have wide applications in many production sys-
tems. Methods based on infrared spectroscopy have been the
subject of considerable research, development and implementa-
tion in the pharmaceutical industry (15,16,17).

An infrared spectrum is unique for a compound and differ-
ent polymorphs may show differences in their infrared
absorbance due to differences at the molecular level (18). IR
spectroscopy is a widely recommended identification method,
wherein the spectrum of the test substance is compared with
the spectrum of the reference standard. The identification test
of the drug in a dosage form is complicated by the presence
of excipients and often requires extraction of the active ingredi-
ent so potentially valuable information about the solid state of
the drug can be lost.

The main aim of this research involved two steps: to
investigate the ability of ANNs to recognize and quantify two
crystal forms of ranitidine hydrochloride polymorphic mixtures
from DRIFT spectroscopy data and provide information about
the solid state; to identify the crystal form and quantify the
active ingredient in tablets.

Artificial Neural Networks

ANNs are computer programs designed to simulate the
way in which human brain processes information. ANNs learn
(or are trained) through experience with appropriate learning
exemplars. The behaviour of a neural network is determined
by the transfer functions of its neurones, by the learning rule,
and by the architecture, itself. We have used a supervised net-
work with a back-propagation learning rule. In this type of
model, information from inputs (e.g., inputs = spectral data)
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Fig. 1. SEM photos of Ranitidine-HCl Form 1 (a) and Form 2 (b).

is fed forward through the ANN to optimise the weights between
neurons. The output of the neuron (e.g., output = level of Form
1) is related to the summed input by a sigmoid shaped transfer
function. During training, optimisation of the network weights
is made by back-propagation of error {e.g., difference between
predicted and actual level of Form 1), and the interunit connec-
tions are changed until the error in predictions is minimised
across many data sets and until the network reaches a specified
level of accuracy. Once the network is trained and tested it can
be given new input information (e.g. spectral data) to predict
the output (e.g., level of Form 1).

Their most important advantage is in solving problems
that are too complex for conventional methods. These problems
include pattern recognition and forecasting.

MATERIALS AND METHODS

Ranitidine Hydrochloride

Samples of ranitidine hydrochloride Form 1 (Ch.-B
560018) and Form 2 (A.-Nr. 32005)] were supplied by Dolorgiet
Pharmaceuticals, St. Augustin, Germany. The commercial tab-
lets was obtained from the local market.
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Table 1. Composition (% w/w) of Mixtures Used for the Tablet Assay

Calibration
Avicell Kollidon Mg-stearate Form 1 Form 2

0 0 0 99 |

0 0 0 98 2

0 0 0 80 20

0 0 0 70 30

0 0 0 50 50
40.2 2.7 0.7 56.4 0
39.7 3 1.5 559 0
337 9 7 50.2 0
25 25 25 25 0
20 20 40 20 0
100 0 0 0 0
0 100 0 0 0

0 0 100 0 0

0 0 0 100 0

0 0 0 60 40

Calibration Samples for the Ranitidine Hydrochloride
Bulk Drug Assay

Binary mixtures were made from the two polymorphic
forms with different proportions. The weight factions of Form
2 in the mixtures were: 0, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70,
100%. All the mixtures were mixed geometrically. Mixtures
with 0, 1, 2, 10, 30, 50, 70 and 100% of Form 2 were used
for training and testing the ANN and with 5, 20, 40, 60% of
Form 2 as a validation data set.

The samples were stored in a desiccator at room tempera-
ture and protected from light.

Calibration Samples for the Ranitidine Hydrochloride
Tablet Assay

Individual tablet ingredients {two microcrystalline cellu-
lose components and magnesium stearate) and two ranitidine
hydrochloride crystalline forms at different weight ratios were
weighed and mixed and their composition is given in Table 2.
All the mixtures were mixed geometrically and stored in a
desiccator at room temperature and protected from light.

These samples were used for training and testing the ANNs
and tablet samples as a validation data set.

Table 2. Predicted Concentrations of Polymorphs in Mixtures

ANN* ANN**
Form t (%) Form 2 (%)
95 S 9764 6.09 9506 45
80 20 78.54 2236 7473 249
60 40 60.68 39.75 5941 40.12
40 60 42,59 57.03 3995 61.13

validation ERR(%) 2.9 9.8 1.9 9.2

* Trained with 173 inputs.
** Trained with 30 selected inputs (sensitivity greater than 1%).

Predicted — Actual

ERR(%) = ( Actual > X 100
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Tablet Samples

Each tablet was gently ground into a fine powder using a
glass mortar and pestle. Ten samples were prepared.

Procedure for Sample Preparation

Sample mixtures were dispersed as a 5% (w/w) mix in
KBr, placed in the large sample cup (approx. 300 mg) using
the supplied sample cup holder and a razor blade was used to
smooth the sample surface. Spectra were measured immediately
after mixing.

Apparatus

For analysis of the samples, a dynamic alignment FT-IR
spectrophotometer, extended range KBr beamsplitter, DTGS
detector and mid-IR ceramic source (Bio-Rad FTS 175C, Bio-
Rad Laboratories, Cambridge, USA) fitted with a diffuse
reflectance accessory (Pike Technology Easidiff) was used.
Spectra were captured using a PC and Win-IR software. 16
scans were averaged. A KBr background scan was per-
formed routinely.

Scanning electron microscopy was performed at 5 kV
acceleration voltage using a Cambridge S360 SEM.

EXPERIMENTAL

ANN Software and Optimal Network Architecture

The MS-Windows based artificial neural network soft-
ware, NNMODEL Version 1.404 (Neural Fusion) was used.

A standard feed-forward network, with back-propagation
rule and multilayer perceptron (19) (MLP) model architecture
with one hidden layer was chosen. The architecture of the ANNs
when consisting of an input layer, one or more hidden layers
and an output layer, is more powerful than perceptrons with
no hidden layer and can compute any continuous mapping. A
single hidden layer was used for simplicity, and because there
is little evidence to suggest that a larger number of hidden
layers improves performance (20).

During training and testing the number of hidden neurons
was varied from O to 10 and training cycles from 0 to 2000
and ANN performance was tested after each addition. Model
selection for an ANN requires choosing the number of hidden
units and connections thereof for optimal performance.

For the bulk drug assay, two ANNs models were trained
and tested. The first ANN had 173 inputs, with each input being
the averaged reflectance across 10 consecutive wavenumbers.
The second ANN had 30 inputs selected from a sensitivity
analysis. Models had one hidden layer, and two output neurons,
one for the percentage of each ranitidine hydrochloride crys-
tal form.

For the tablet assay the first ANNs model had 173 inputs
and second had 35 inputs selected from a sensitivity analysis.
ANNs models had one hidden layer and five output neurones.
Two output neurones were for the percentage of two ranitidine
hydrochloride crystal forms and three more outputs for tablet
excipients and additives.
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Training

At the start of the training run, both weights and biases
were initialized with random values. During training, the perfor-
mance of the ANN was evaluated with testing data. That is
75% of the sample data was used for training and testing was
done with the other 25% of the data. The set used for testing
was rotated and the results of the four runs were averaged.

RESULTS AND DISCUSSION

It is widely recognized that variation in particle size can
have a significant influence on the diffuse reflectance measure-
ments (21). Grinding could reduce the variation in particle
size. However, grinding was avoided because it could induce
polymorphic transitions (22). We wanted to keep the method
as simple as possible and to directly analyse the powdered
samples with minimal pretreatment.

Common methods of building linear calibration models are
multiple linear regression (MLR) (23,24), principal components
regression (PCR) and partial least-squares (PLS) (25). For less
noisy data it is always possible to obtain accurate calibration
models using a limited number of wavelengths (26,27). If there
is only two components in a mixture a minimum of two peaks
can be used to determine the relative amount of each component
in the mixture. In the multivariate case, when there is more than
one independent variable, the general computational problem is
to fit a line to a number of points. The conventional multivariate
calibration approach involves a time consuming process of
spectrum decomposition and reconstruction until a mathemati-
cally generated spectrum closely matches the measured spec-
trum (24,25). Full spectral classification techniques, PLS and
PCR has shown less success in handling the low signal-to-noise
ratio for complex mixtures. When applied to noisy data, they
perform very poorly and performance of PLS is usually better
that that of PCR (28). In such cases a more empirical approach
such as ANN exhibits advantages. ANNs modeling technique
has attracted increasing interest in recent years as a most promis-
ing candidate for classification and multivariate calibration
problems.

The ANN approach employed pattern recognition on the
entire low-resolution spectrum and modelled all peaks simulta-
neously. MLP models compute the output as a sum of non-
linear transformations of linear combinations of the inputs. The
number of weights and hidden units increases linearly with the
number of inputs. The higher the dimensionality of the input
space, the more training data sets are required. If the dimension
of the input space is high the network uses almost all its
resources to represent irrelevant portions of the input space.
Careful feature selection and scaling of the inputs affects the
complexity of the problem, as well as the selection of the best
neural network model. In order to further reduce the amount
of data and select the best ANN architecture, a pruning method
was applied similarly to backward elimination in stepwise
regression. Connections or units were eliminated during training
based on sensitivity analysis, highest coefficient of multiple
determination and minimal generalization error.

Each crystalline form presented to the sample produced
a characteristic spectrum (Fig. 2). By presenting mixtures of
polymorphs and mixtures with different ratios of tablet compo-
nents to the system, a database of spectra was constructed.
From this database, training and testing sets were generated.
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Fig. 2. DRIFT spectra of two ranitidine hydrochloride crystalline
forms.

The training set was used to actually train the network and the
test set was used to monitor overtraining the network. The error
in mapping the training values decreased as the number of
hidden neurones was increased. By increasing the number of
hidden neurones, the ANN more closely followed the topology
of the training group clusters on optimisation. However, above
an optimum level, adding more hidden neurones resulted in
tracing the training pattern too closely and the system was
overtrained.

Another useful variation was to maintain the hidden layer
but also allow direct connections from the input layer to the
output layer. This would speed convergence if the relationships
were simple. With direct connections each neurone had one
additional weight as an input that allowed an additional degree
of freedom when trying to minimise the training error

The testing error is not a good estimate of the generalisation
error. One method for getting an unbiased estimate of the gener-
alisation error is to present the ANN with a new, third set of
data, that were not used at all during the training process. The
relative error (ERR) (29) was used to compare generalisation
ability of the models.

Using the spectral intensities directly as input data vectors
had a weak correlation with structural properties. Reduction
and transformation of the input data was necessary to enhance
the ANN performance (30). Transformation of the variable also
reduced the number of outliers, and variance among values.
The original spectra were sampled between 650.16 and 3999.40
wavenumbers (cm™ ') and post processed to 1738 spectral inten-
sities. These spectral data were further processed to smooth the
noise in the spectrum. The 1738 reflectances were reduced
into 173 averaged spectral values, each from ten consecutive
wavenumbers (dB = 10). The system was trained to a satisfac-
tory level with averaged spectral values as the inputs and sensi-
tivity analysis was done on these inputs. Sensitivity reports
show the sensitivity of the output variables, as a percentage,
to the changes in the input variables. It shows the rate of change
of the output with respect to the corresponding values of the
inputs. The final ANNs were trained with inputs whose sensitiv-
ity was greater than 1%. The results of trained networks were
compared and validated.

Polymorphs Mixture Assay

Direct connection between input neurones and output neu-
rones improved the network performance. During training the
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coefficient of multiple determination increased from 0.277 for
the model without direct connections between input and output
layer to 0.998 for the model with direct connections and valida-
tion relative error decreased from 94.9 to 9.8% for Form 1 and
from 28.2 to 2.9% for Form 2. The network was trained twice
using 173 input and with 30 selected inputs on the basis of the
sensitivity analysis. Results obtained with the selected inputs
(sensitivity greater that 1%) and with three hidden neurons
were not different from those using the 173 inputs. The level
of Form 2 polymorph in mixtures of both crystal forms was
varied from 1-100%. The results were in close agreements with
the true values calculated from the masses of the polymorphs in
the mixtures. At the same time, they were indicative of the
good accuracy of the method. The mean * S.D. recovery values
were 96.61 and 99.32 for Form 1 and Form 2. Levels of Form
2 of 1% in the Form 1 were detected with the S.D. of 0.81.
Linear regression analysis of theoretical composition against
predicted values gave slopes of 1.019, intercept value of —0.378
and correlation coefficients of r = 0.998. The intercept was
not significantly different from zero and slope was not different
from unity indicating no method bias and absence of propor-
tional error.

The minimum quantifiable level (MQL) was determined
from multiple measurements (n = 5) of the spectral response
of a single sample mixture containing 1% of Form 2 (31).
Based upon a standard deviation of 0.81, a MQL of 7.9%
and a detection limit (LD) of 2.4% (w/w) for the Form 2
was calculated.

The trained ANN successfully identified and quantified
both forms in the mixtures used for the validation (Table 2).
The mean recovery values were 102.14 and 98.09 of Form 1
and 107.00 and 104.17% of Form 2, for the ANN with 173
and 30 inputs respectively. Levels of 5 * 0.54% of Form 2
were successfully detected with selected inputs.

Tablet Assay

The suggested method was applied to qualify and quantify
the ranitidine hydrochloride crystal form present in tablet for-
mulations, directly with minimal sample pretreatment. Since
there was no need to extract the active ingredient from the
dosage form, the identification was accomplished in the pres-
ence of excipients and additives (Fig. 3 and Fig. 4). ANN was
trained with 173 (averaged reflectances) and with 35 input data
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Fig. 4. DRIFT spectra of tablet excipients and additives.

(sensitivity greater than 1%) and with five output neurons one
for each tablet ingredient. Direct connection between input and
output neurons did not improve the network performance. This
was an exceptional task to distinguish complex spectral patterns,
identify and quantitate all tablet ingredients and the ranitidine
hydrochloride crystal form present in tablet formulation.

The ranitidine hydrochloride tablet is a multicomponent
tablet formulation with a significant overlap of the spectral
pattern of ingredients. The ANN was trained to recognize spe-
cific patterns of constituents of the formulations from the overall
spectral pattern. Better results were obtained for the network
trained with 173 inputs. Less significant peaks increased the
success of predictions over ANNs that contained only selected
peaks (sensitivity > 1%), where peak selection based on selec-
tivity reduced the importance of low intensity peaks. The test
results showed that a sufficient number of hidden neurons was
3 to S to achieve good convergence on the training data (Table
3). The mean sum of squared error (SSE) was less than 0.03.
The trained ANN successfully identified crystal form and quan-
tified all ingredient from tablets despite interference from for-
mulation matrix and suggested that the complex problem of
quantifying drugs from mixtures having two or more compo-
nents with overlapping spectra can be solved by DRIFT-ANN
technique (Table 4).

Table 3. Effect of Number of Hidden Neurones in ANN Training for
the Tablet Assay

Number of hidden neurones 2 3 4 5 6

Testing SSE
Training SSE
Training R?

0.013 0.007 0004 0.002 0003
0.005 0.003 0.0C4 0.003 0.007
0.864 0.925 0989 0993 0.993

Table 4. Averaged Results (n = 10) of Predictions for Tablet Contents
Obtained with ANN Having 5 Hidden Neurones and 1000 Training

Cycles
Ranitidine- Ranitidine-
Mg- HCI Form HCIl Form
Avicell Kollidon stearate 1 2
Predicted (%) 41.09 403 1.24 54.11 —-0.69
Expected (%)'*  40.20 2.70 0.70 56.40 0.00
SD 6.77 0.69 1.88 7.32 1.69
RSD (%) 1647 17.08 151.07 13.52 *
ERR 0.02 0.49 0.78 0.04 *

* Could not be calculated.

CONCLUSIONS

The results of this research have shown the benefits of
the neural network approach in analysing spectral data. The
simplicity of this method, together with the satisfactory recover-
ies and good selectivity, shows the potential of DRIFT-ANN
to analyse polymorphic purity of crystalline ranitidine-HCI. The
proposed method is not only simple and direct but it also
provides information about the polymorphic form of crystalline
ranitidine hydrochloride as a bulk drug and as an active ingredi-
ent from tablet formulation. The tablet formulation was analysed
after minimal sample pretreatment and there was no need to
extract the active ingredient from the excipients in the formula-
tion when potentially valuable information about the solid state
of the drug could be lost. For analysis of a commercial product
the ratio of excipient to active drug substance should be con-
stant. A further step would be to use calibration samples limited
to varying only the Form 1/Form 2 concentration ratio, to
achieve greater accuracy and to develop a more precise assay.

As shown, simultaneous identification and quantification
of all tablet ingredients in the formulation was possible. The
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simultancous spectral determination and quantification of all
ingredients has not yet been reported in literature.

Potential applications of the method are in monitoring

polymorphic transitions or changes in the degree of crystallinity
in the solid state induced during the pharmaceutical processing.
These changes can be detected and even quantified. Furthermore
it might be applied for the simultaneous identification of more
than one active ingredient in the formulation.
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